Dirac's map-color theorem for choosability

نویسندگان

  • Thomas Böhme
  • Bojan Mohar
  • Michael Stiebitz
چکیده

It is proved that the choice number of every graph G embedded on a surface of Euler genus and is at most the Heawood number H b p c and that the equality holds if and only if G contains the complete graph KH as a subgraph

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

On generalized list colourings of graphs

Vizing [15] and Erdös et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks’ theorem [4] was proved but the choosability version of Gallai’s theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (P, k)-choosability hav...

متن کامل

Extended core and choosability of a graph

A graph G is (a, b)-choosable if for any color list of size a associated with each vertices, one can choose a subset of b colors such that adjacent vertices are colored with disjoint color sets. This paper shows an equivalence between the (a, b)-choosability of a graph and the (a, b)-choosability of one of its subgraphs called the extended core. As an application, this result allows to prove th...

متن کامل

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 32  شماره 

صفحات  -

تاریخ انتشار 1999